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Abstract

A robust bioinformatics capability is widely acknowledged as central to realizing the promises of toxicogenomics. Success-
ful application of toxicogenomic approaches, such as DNA microarray, inextricably relies on appropriate data management,
the ability to extract knowledge from massive amounts of data and the availability of functional information for data inter-
pretation. At the FDA’s National Center for Toxicological Research (NCTR), we are developing a public microarray data
management and analysis software, called ArrayTrack. ArrayTrack is Minimum Information About a Microarray Experiment
(MIAME) supportive for storing both microarray data and experiment parameters associated with a toxicogenomics study. A
quality control mechanism is implemented to assure the fidelity of entered expression data. ArrayTrack also provides a rich
collection of functional information about genes, proteins and pathways drawn from various public biological databases for
facilitating data interpretation. In addition, several data analysis and visualization tools are available with ArrayTrack, and
more tools will be available in the next released version. Importantly, gene expression data, functional information and analysis
methods are fully integrated so that the data analysis and interpretation process is simplified and enhanced. ArrayTrack is
publicly available online and the prospective user can also request a local installation version by contacting the authors.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction environment-induced toxicity, with emphasis on de-

termination of corresponding gene/protein functions,

The use of “omics” technologies to assess the pathways, and regulatory networks, are driving the

gene/protein expression changes in chemical- and/oremergence of the new research field of toxicoge-
nomics [1]. DNA microarray is one of the main
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A DNA microarray experiment proceeds through procedures to conduct toxicogenomic research in a
hypothesis, experimental design and gene expressioncollaborative environment. Correspondingly, a mi-
measurement in a manner similar to a conventional croarray data management, analysis and interpretation
toxicology study. The amount and nature of the data software system, ArrayTrack, has been developed to
associated with a microarray experiment, however, address the bioinformatics challenges associated with
impose unique challenges requiring bioinformatics microarray experimerib].
support. There are three major bioinformatics issues The distinct features of ArrayTrack compared to
important for the success of the experiment: other database software from public and commercial
vendors are: (1) a quality control mechanism is im-
plemented to assure the fidelity of entered expression
data; (2) a rich collection of functional information
about genes, proteins and pathways is available for
facilitating data interpretation; (3) gene expression
data, functional information and analysis methods
. . .. are integrated so that the data analysis and interpre-
data analysis that normally requires a multidis- ; S )

tation process is simplified and enhanced; (4) con-

ciplinary group of scientists to access the same . . . i
L - _ventional toxicological data and gene expression data
dataset. Second, because gene annotation is contin-

. ; . are cross-linked to facilitate investigation of toxicity
uously updated in the public domain, the analyzed ) :
. o at the molecular level; and (5) the system is easy to
data need to be re-examined periodically. Lastly,

iven that the analysis methods are rapidly evolv- be extended to accommodate other types of “omics”
9 Y pidly data (e.g., proteomic and metabonomic data) for the

ing, a well-managed and annotated dataset can be, o
easily reanalvzed systeomic” research.
y alyzed. . At the time of this writing, the ArrayTrack version
e Data analysis. A single experiment can produce a .
. ; 2.01 can be accessed througttp://www.edkb.fda.
large amount of data and a formidable analysis un- )
. . . gov/webstart/arraytrack http://www.weblaunch.nctr.
dertaking. Normally, the immensity of data analy- : :
. : . : fda.govl/jnip/arraytrackfor FDA users). Prospective
sis scales directly with the complexity of the ex- . T
. . . users also can acquire a free distribution of the soft-
periment, such as the number of technical and bio- ) :
logical replicates, and temporal and dose response "~ o by contacting the authors. In this paper, the
9 P ' P b main features of ArrayTrack are described with em-

parameter.s. The ab'“ty tp search, f|lter, and apply phasis on the practical issues and rationale behind the
mathematical and statistical operations and graph-
software development.

ically visualize data quickly with an intuitive user
interface is crucial to the laborious process.

o Data interpretation. Experiment interpretation is a 2 Methods
highly contextual process in light of known and un-
known functions of genes, proteins and pathways.
The inherent noise in microarray data and a plethora
of potential sources of variability inevitably com-
plicate and possibly confound interpretation. Effi-
cient and effective interpretation demands that rele-
vant knowledge residing in public sources for gene
annotation, protein function and pathways are read-
ily available and integrated with the data analysis
process.

o Data management. This step acquires essential in-
formation associated with a microarray experiment.
A microarray experiment involves multiple steps
and the data in each step needs to be appropriately
managed, annotated, and most importantly central-
ized. First, this is convenient for the subsequent

ArrayTrack is a client—server system. The ORA-
CLE server stores and integrates in-house omics data
and data from public resources about genes, proteins
and pathways. The JAVA language was used to con-
struct the entire user interface, query mechanism,
and data visualization and analysis tools. The use of
JAVA ensures portability of ArrayTrack to all major
computer operating systems, as well as enabling easy
web-deployment. The client—server connection is re-

At the FDA’s National Center for Toxicological alized through JDBC (JAVA Database Connectivity).
Research (NCTR/FDA), the microarray core facility The use of JDBC makes it easy for ArrayTrack to use
using a two-channel microarray platform has been other relational databases for backend storage, since
established that utilizes standardized experimental dependency on ORACLE is minimal.
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ArrayTrack has a modular architecture. Each mod-
ule for each application is constructed independently,
such that existing or new capabilities can be enhanced,
changed or added in accordance with priorities and e
evolving experimental progress. Thus, ArrayTrack
is under continuous development and updating. Al-
though ArrayTrack is 100% Java, integration with
non-Java applications can readily be made through
socket-based communication on a local machine, pro-
vided the other application can be scripted or if small e
programming changes in the other application can be
made.

ArrayTrack is implemented using Java Webstart
technology, which allows installation through a sin-
gle web link with updates of the software performed
automatically whenever the application is run. The
software has been fully tested on Microsoft Windows
(98/NT/2000/XP) and Unix platforms (including
Linux).

3. Results and discussion

243

is also input in this section, which may serve as a
toxicity-specific expression signature and be used
for cross-experiment comparisons.

Hybridization and data. The description of the hy-
bridization process and the raw data are input in this
section. Both the raw images and the associated nu-
merical intensities are stored. ArrayTrack supports
both one- and two-channel microarray experiments
including Affymetrix data.

Sample. An accurate description of animals and
treatments is an essential task of toxicogenomics re-
search for establishing association of genomic data
with phenotype. The critical information associated
with the samples (normally associated with animal
tissue in toxicogenomic research) are input in this
section. In the future, a version storing more exten-
sive information about samples will be implemented
in accordance with the MIAME/Tox guidance
(http://www.mged.orpthat will expand the original
MIAME proposal to encompass additionally re-
quired information for toxicogenomic experiments.

It is common that hypothesis generation, hybridiza-

tion experiment and sample preparation might be con-
ducted by different groups of people in an organization
that, specifically, has a microarray core facility. This

specific design of the form is advantageous in such a
collaborative environment, where information can be
separately entered into each section by different sci-
entists.

3.1. Managing toxicogenomics data

ArrayTrack supports the Minimum Information
About a Microarray Experiment (MIAME) guideline.
MIAME defines essential information for a microar-
ray experiment that enables the results to be inter-
pretable and the experiment to be reproduciléie
Currently, a number of journals, including Nature, the
Nature group of journals, Cell, The Lancet, EMBO
and Toxicology Pathology, requires an accession
number from the public microarray databases devel-
oped based on the MIAME guidelines to be supplied
at or before acceptance of publicatiffj.

Microarray information for a toxicogenomic study
can be input and viewed/edited through a comprehen-
sive data submission form in ArrayTrackig. 1A).
The form contains three sections:

3.2. Assuring quality of expression data

A database is only useful when the quality of
entered data is indexed. Only a validated database
can be a rich resource for cross-experiment and
cross-platform comparisons to derive toxicity-specific
signatures. Microarray experimentation has become
one of the fastest-growing methods, and has led to a
broad diversity of microarray databases in both the
public and commercial domain8-10]. Although
e Experiment design. An experiment’s hypothesisand the importance of quality control (QC) is generally

the associated experimental protocols are input in understood, there is little QC practice in the existing

this section. The owner of the experiment can assign microarray databases.

“read and/or write” privilege for experiment infor- We implemented an approach for the QC of

mation and results with collaborators and others. A two-channel microarray dat&ig. 1B). The QC page

list of genes anticipated to be significant as a con- summarizes the most relevant information about a

sequence of the experiment hypothesis and designslide into one interface for a Pass/Fail/Review call.
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The user can determine the quality of individual Table 1
microarray results through visualizing data, apply- Comparison of the number of terms in gene ontology between 24
ing statistical measures and viewing experimental January 2003 and 24 July 2003

annotation. Statistical measures are provided to as- 24 January 2003 24 July 2003
sess the quality of a hybridization result based on Total number of GO terms 46199 80972

the raw expression data, including signal-to-noise The number of terms for the category of

and signal-to-background ratio, the percentage of Biological process 30188 56741
non-hybridized and saturated spots, etc. The experi- Molecular function 37018 66225

mental annotations associated with the processes of Cellular component 22371 38547

hybridization, RNA extraction and labeling are also _
available to the end-user. Additionally, a scatter plot ~ We developed several ORACLE databases to mirror

of Cy3 versus Cy5 (or an M—A plot) together with the the contents of GenBank, SWISS-PROT, LocusLink,
rank intensity plot (RIP) of both channels is available Kyoto Encyclopedia of Genes and Genomes (KEGG),
for visual inspection. (The functions of the scatter plot, GO and others. GenBarjk3] contains sequence data
M-A plot and RIP are discussed in the section “An- (coding, genomic, EST, and synthetic) with basic
alyzing and visualizing expression data.”) The plots annotation, while SWISS-PRQO[L4] is a protein se-
and statistics are dynamically linked. Users are able quence database of low redundancy with high levels
to examine the quality of a slide based on a specific of annotation. LocusLinK15] offers a simple query
set of genes or the entire list of genes. Being able to interface to retrieve information about human genes
examine a subset of genes is useful in the QC processand some non-gene loci, and also provides direct con-
because the user can determine quickly the quality of nections to related information available from other
a slide based on selected genes, such as housekeegesources. One of the major components of KEGG
ing genes, spike or positive/negative control genes. [15] provides information on metabolic and regula-
Importantly, each QC decision is recorded in the tory pathways. In order to keep current, we update
database, permitting later development of a supervisedthe content of our mirrored databases using scripts
learning model that relates calculated statistics with every 2 weeks. Importantly, we extract the functional
QC decisions; such a model, when automated, could information from these databases to construct three
eliminate tedious human efforts and provide standard- enriched libraries, GeneLili={g. 2A), ProteinLib and
ized and unbiased QC decisions for large numbers of PathwayLib. As the names suggest, these three li-

experiments. braries concentrate functional information on genes,
proteins and pathways, respectiv@hj. The user can

3.3. Aggregating functional information about genes, quickly identify the functional information for a set of

proteins and pathways significant genes derived from analysis by searching

these libraries.

The public domain has a rich and diverse collec-
tion of biological databases that provide functional 3.4. Concerning the representation of genes on a chip
information useful for microarray experiment inter-
pretation and associated knowledge discovidrj]. The difficulties associated with producing cDNA
Some public databases are undergoing rapid updatemicroarray in terms of purifying PCR products and
and expansion. For example, the gene ontology (GO) managing the cDNA banks have led to wide use of
consortium[12] maintains a controlled vocabulary short oligonucleotides to represent the desirable genes
database of functional descriptions for genes in terms on a chip. For example, Affymetrix (Affymetrix, Santa
of three functional categories, biological process, Clara, CA) uses 25-mer, MWG (MWG Biotech, High
molecular function and cellular component. As shown Point, NC) uses 50-mer, Agilent (Agilent Technolo-
in Table 1 the total number of functional descriptions gies, Palo Alto, CA) uses 60-mer, Operon (QIAGEN
(GO terms) as well as the numbers in the individual Operon, Alemeda, CA) uses 70-mer, and Clontech
categories have almost doubled within a period of 6 (BD Biosciences, Palo Alto, CA) uses 80-mer for their
months (January—July, 2003). oligonucleotide microarray fabrication. The potential
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cross-hybridization of oligonucleotide arrays has been [16], we are also implementing an algorithm for as-

a general concern and there are still different opinions sessing structure similarity of chemicals and exploring

on the best length of oligonucleotide probes. More structure—toxicity relationship based on the substruc-

data are needed to find a probe length that best bal-ture features and physicochemical properties derived

ances specificity and sensitivity. from the structure. ToxicantLib has been initially pop-
Given the debate on which length of probes provides ulated with data from our Endocrine Disruptor Knowl-

better indication (representation) of a gene and has lessedge Base (EDKBJ17] and the Carcinogenicity Po-

cross-hybridization, storing sequence of probes is use-tency Database (CPDRB)8].

ful for cross-platform comparison. We have developed

ChipLib (Fig. 2B) that contains all functional informa-  3.6. Analyzing and visualizing expression data

tion provided by the manufactures for the probes on a

chip, including the sequence. Moreover, since under-  Several tools for data normalization, analysis and

standing the function and biological characteristics of visualization are implemented in ArrayTrack. The raw

the probes (genes) presented on a microarray could beexpression data in ArrayTrack can be manually or au-

essential for interpretation of microarray results, genes tomatically processed using two global normalization

represented on the array are also directly linked with approaches, total intensity norma"zatim:l and |og

the GenelLib, ProteinLib and Pathwayle for facilitat- ratio mean scale norma"zatiQﬂO].

ing biological interpretation of experiment results. RIP sorts intensities of genes in a descending order
along they-axis, and each gene is given an ordinal

3.5. Linking expression data with data from number along the-axis to reflect its relative posi-

conventional toxicology study tion on a chip[21]. The green curve represents the

cy3-labeled samples and the red curve represents the

The combination of expression data with more tra- Cy5-labeled sample. The shape of the curves charac-
ditional toxicology data and chemical structure infor- terizes the general properties of the expression data.
mation to determine phenotypic responses to toxicants Well-balanced two-channel microarray data should
at the mechanistic level is one of the important re- show a superimposed or parallel distribution of the
search goals of toxicoinformatics. Thus, an additional green and red lines=(g. 3A). The crossover of the
library, ToxicantLib, is being developed to provide green and red lines shown Fig. 3B indicates the
linkage between toxicological data and the expres- unbalanced bias between the two channels. Thus, RIP
sion data. The ToxicantLib explicitly contains chem- can give a general impression about the quality of
ical structure together with toxicological endpoints. data.

Since chemicals with similar structures are likely to ~ The ScatterPlot Viewer provides the pair-wise plot-
exhibit similar biological (or toxicological) activities ~ ting of Cy3 versus Cy5 for two-channel microarray

(A) (B)
15.0 — 15.0 5(
2 2
D - S -
£ c
2 2
£ =
N 100~ o 100
o o
1 I 1 I 1 I 1
2.0 4.0 2.0 4.
intensity sorted rank ¥ intensity sorted rank w10

Fig. 3. Rank intensity plot for a balanced (A) and an unbalanced (B) two-channel array.
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Fig. 4. Scatter plot (A) and M-A plot (B) for the data shownFiy. 2B.

data, and also plots expression data of one sam-used to eliminate spots for which the intensity of both
ple versus another for one-channel microarray data. Cy3 and Cy5 channels falls below the selected thresh-
Since the display of a single-slide expression data old. The user can also search the image to identify
using the scatter plot does not fully reflect the con- the position of a selected list of genes, which could
cordance and quality of the data, we also provide be useful to examine the reliability of the differen-
an M-A plot [22], where the log intensity ratio tially expressed gene list. For example, care must be
M = log,(Cy5/Cy?J) is plotted against the mean log taken if most significant genes are located in a spe-
intensity A= 0.5l0g,(Cy3 x Cy5). A comparison of cific block, which usually indicates a flaw of that
the scatter plot with the M—A plot is given for the block.

same single-slide expression data used-ig. 3B. The BarChart Viewer compares the expression level
Although the scatter plotHg. 4A) still shows a good of a gene across the array data within a single experi-
concordance of two channels, the unbalanced naturement or across multiple experiments and/or platforms

of the data is revealed in the M—-A ploFify. 4B), (Fig. 6). Each bar is associated with a particular array
where the data are not parallel along thaxis. and the height of a bar indicates the expression level

The VirtualArray Viewer displays expression data (fold-change for the two-channel array and intensity
in the format of the original array imagé-if). 5). for one-channel array) of a gene that can be repre-

This function reconstructs the original array image sented by the data of either before or after normal-
based on either the raw or normalized expression dataization. This function can be useful for examining the
and provides a visual representation of data for fur- dose-response relationship and time-dependent pat-
ther exploration, analysis and interpretation. For ex- tern of a specific gene.

ample, there are two sliding controls on the top of  Given the broad availability and selection of mi-
the image for filtering out unwanted spots. The up- croarray data analysis tools in both commercial and
per sliding control is used to eliminate spots whose public domains, we are focusing on developing inter-
expression fold change is less than a predefined cri- faces to provide interoperability between ArrayTrack
terion (e.g., two-fold). The other sliding control is and other analysis software. In the next release
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Gene Expression Bar Chart Across Different Arrays
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Fig. 6. BarChart Viewer. It shows that the gene (heat shock protein, Hspca, GenBank Acc# J04633) is over-expressed in the drug-treated
mice compared to the control mice for total of 40 array data.

of the software, the full integration of ArrayTrack analysis results to be directly linked with other public

with TASS from Chipscreenhftp://www.chipscreen.  databases.

com/chinesegb/chipservice/tass.hinwill allow users One major benefit derived from the integration of

to access a number of data mining and data analysisanalysis methods with the functional information is

functions, including hierarchical cluster analysis, prin- the immediate feedback that can be given to the biolo-
cipal component analysis, self-organizing maps and gists so that the biological interpretation can be rapidly

support vector machine§&ig. 7). investigated. This, in turn, will lead to the selection
of the optimal analysis method. The integrating pro-

3.7. Integrating analysis with functional information cess is necessary given that there are many choices of

for biological interpretation methods available for analyzing microarray data and,

unfortunately, it is often difficulty to determine the

The primary emphasis of ArrayTrack is the direct best choice. For example, even for the well-defined hi-
linking of analysis results with functional informa- erarchical clustering analysis, many different options
tion for facilitating the interaction between the choice are available and they may produce different results
of analysis methods and the biological relevance of for the same data sets. In such a situation, the choice
analysis results. Using ArrayTrack, the user can se- of the analysis method is dependent on the biological
lect an analysis method and apply it to the stored relevance of the results derived from the method. The
microarray data, and the analysis results can be di- integration of the analysis method with functional in-
rectly linked to gene, protein and pathway information formation will improve the ability and reduce time for
in the libraries. Additionally, ArrayTrack also allows data interpretation.


http://www.chipscreen.com/chinese_gb/chipservice/tass.htm
http://www.chipscreen.com/chinese_gb/chipservice/tass.htm
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4. Future directions and challenges

DNA microarray has been enjoying steady growth
of impact on toxicology and the trend is certain to
continue. This paradigm shift in toxicology is largely
facilitated by unprecedented advancement in bioinfor-
matics and other informatics-related fields. However,
DNA microarray technology is still rapidly evolving,
in part, owing to the fact that large variability is still
observed for most microarray platforms and it is dif-
ficult to generate comparable results from different
platforms. The current technology often generates
more questions than answers for application in tox-
icogenomics and specifically in regulation. It is pro-

posed that more reliable conclusions may be reached

by integrating gene expression data with other omics

W. Tong et al./Mutation Research 549 (2002) 241-253

vided encouragement and insightful suggestions for
the development of ArrayTrack.
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